Alyukov, M., Makhortykh, M., Voronovici, A. & Sydorova, M. (2025). LLMs grooming or data voids? Chatbot references to Kremlin disinformation reflect information gaps, not manipulation. Harvard Misinformation Review 6(5), 1-24. https://doi.org/10.37016/mr-2020-187
Merril, S., Makhortykh, M., Mandolessi, S., Richardson-Walden, V.G., Smit, R. & Wang, Q. (2025). Handling the hype: Demystifying artificial intelligence for memory studies. Memory, Mind & Media 4, 1-16. https://doi.org/10.1017/mem.2025.10018
Kozlovski, A., & Makhortykh, M. (2025). Digital Dybbuks and virtual Golems: the ethics of digital duplicates in Holocaust testimony. Memory, Mind & Media, 4, 1-20. https://doi.org/10.1017/mem.2025.10006
Urman, A., & Makhortykh, M. (2023). My war is your special operation: Engagement with pro- and anti-regime framing of the war in Ukraine on Russian social media. Media, War, & Conflict (online first). https://doi.org/10.1177/17506352251371864
Adam, S., Rohrbach, T., Keller, F., Makhortykh, M., de Léon, E., Valli, C., ... & Sydorova, M. (2025). How do media contribute to the dissemination of conspiracy beliefs? A field study combining panel and web tracking at the outbreak of the COVID-19 pandemic. Journal of Communication, jqaf033.
Rohrbach, T., & Makhortykh, M. (2025). A matter of mindset? Features and processes of newsroom-based corporate communication in times of artificial intelligence. Corporate Communications: An International Journal, 30(4), 624-641. doi: https://doi.org/10.1108/CCIJ-07-2024-0118
Jumle, V., Makhortykh, M., Sydorova, M., & Vziatysheva, V. (2025). Finding frames with BERT: A transformer-based approach to generic news frame detection. Social Science Computer Review (online first). doi: https://doi.org/10.1177/08944393251338396
Wirz, D. S., de León, E., Adam, S., & Makhortykh, M. (2025). Tracing Knowledge Gaps: Investigating the Influence of Education on News Exposure and Knowledge Using Digital Trace Data. The International Journal of Press/Politics (online first). doi: https://doi.org/10.1177/19401612251335372
Makhortykh, M., de Leon, E., Urman, A., & Gil Lopez, T. (2025). Where did you come from, where did you go? News trajectories in Germany and Switzerland. Journal of Computational Social Science, 8(33), 1-21. doi: https://doi.org/10.1007/s42001-025-00361-3
Makhortykh, M., de León, E., Christner, C., Sydorova, M., Urman, A., Adam, S., Maier, M. & Gil-Lopez, T. (2025). Is a single model enough? The systematic comparison of computational approaches for detecting populist radical right content. Quality & Quantity (online first). doi: https://doi.org/10.1007/s11135-024-02034-1
Christner, C., Makhortykh, M., & Gil-Lopez, T. (2025). Populist radical-right attitudes, media trust, and social media reliance: Combining survey and tracking data to investigate predictors of online exposure to disinformation. Telematics and Informatics, 98, 1-12. doi: https://doi.org/10.1016/j.tele.2025.102250
Kuznetsova, E., Makhortykh, M., Vziatysheva, V., Stolze, M., Baghumyan, A. & Urman, A. (2025). In generative AI we trust: Can chatbots effectively verify political information? Journal of Computational Social Science, 8(15), 1-31. doi: https://doi.org/10.1007/s42001-024-00338-8
Urman, A. & Makhortykh, M. (2025). Trolls, bots and everyone else: The analysis of multilingual social media manipulation campaigns on Twitter during 2019 elections in Ukraine. East European Politics, 41(1), 97–116. doi: https://doi.org/10.1080/21599165.2024.2415640
Maier, M., Adam, S., Gil Lopez, T., Makhortykh, M., Bromme, L., Christner, C., ... & Urman, A. (2025). Populist radical-right attitudes, political involvement and selective information consumption: Who tunes out and who prefers attitude-consonant information. Mass Communication and Society, 28(1), 101-129.. doi: https://doi.org/10.1080/15205436.2024.2310156
Urman, A., & Makhortykh, M. (2025). The silence of the LLMs: Cross-lingual analysis of guardrail-related political bias and false information prevalence in ChatGPT, Google Bard (Gemini), and Bing Chat. Telematics and Informatics, 96, 102211. https://doi.org/10.1016/j.tele.2024.102211
Walden, V. & Makhortykh, M. (2024). Imagining human-AI memory symbiosis: How re-remembering the history of artificial intelligence can inform the future of collective memory. Memory Studies Review, 1(2), 323-342. doi: https://doi.org/10.1163/29498902-202400016
Makhortykh, M., de León, E., Urman, A., Christner, C., Sydorova, M., Adam, S., Maier, M. & Gil-Lopez, T. (2024). Panning for gold: Comparative analysis of cross-platform approaches for automated detection of political content in textual data. PLoS ONE, 19(11): 1-15. doi: https://doi.org/10.1371/journal.pone.0312865
Adam, S., Makhortykh, M., Maier, M., Aigenseer, V., Urman, A., Gil-Lopez, T, Christner, C., de Leon, E., & Ulloa, R. (2024). Improving the Quality of Individual-Level Web Tracking: Challenges of Existing Approaches and Introduction of a New Content and Long-Tail Sensitive Academic Solution. Social Science Computer Review (online first). https://doi.org/10.1177/08944393241287793
de León, E., Makhortykh, M., & Adam, S. (2024). Hyperpartisan, alternative, and conspiracy media users: An anti-establishment portrait. Political Communication, 41(6), 877-902. doi: https://doi.org/10.1080/10584609.2024.2325426
Valli, C., de León, E., & Makhortykh, M. (2024). Personality and political news consumption online: A comparison between self-reports and webtracking data. Personality and Individual Differences, 228, 1-8. doi: https://doi.org/10.1016/j.paid.2024.112735
Bareikytė, M., Makhortykh, M., Martin, A., Nazaruk, T., & Skop, Y. (2024). How should platforms be archived? On sustainable use practices of a Telegram Archive to study Russia’s war against Ukraine. Media, Culture & Society (online first). doi: https://doi.org/10.1177/01634437241245915
Tschirky, M., & Makhortykh, M. (2024). # Azovsteel: Comparing qualitative and quantitative approaches for studying framing of the siege of Mariupol on Twitter. Media, War & Conflict, 17(2), 163-178.. doi: https://doi.org/10.1177/17506352231184163
Mavridis, P., Inel, O., Wilcke, X., Makhortykh, M., de Jong, M., Mazepus, H., Dimitrova, A., de Vos, J., Bozzon, A., & Kuhn, T. (2024). Framing is Mightier than the Sword: Detection of Episodic and Thematic Framing in News Media. Human Computation, 11(1), 1-28. doi: https://doi.org/10.15346/hc.v11i1.132
Ulloa, R., Makhortykh, M., Urman, A., & Kulshrestha, J. (2024). Novelty in news search: a longitudinal study of the 2020 US elections. Social Science Computer Review, 42(3), 700-718. doi: https://doi.org/10.1177/08944393231195471
Ulloa, R., Richter, A. C., Makhortykh, M., Urman, A., & Kacperski, C. S. (2024). Representativeness and face-ism: Gender bias in image search. new media & society, 26(6), 3541-3567. Doi: https://doi.org/10.1177/14614448221100699
Urman, A., & Makhortykh, M. (2024). “Foreign beauties want to meet you”: The sexualization of women in Google’s organic and sponsored text search results. new media & society, 26(5), 2932-2953. doi: https://doi.org/10.1177/14614448221099536
Urman, A., Hannak, A., Makhortykh, M. (2024). User Attitudes to Content Moderation in Web Search. Proceedings of the ACM on Human-Computer Interaction, 8 (CSCW1), 1–27. doi: https://doi.org/10.1145/3637423
Ulloa, R., Makhortykh, M., & Urman, A. (2024). Scaling up search engine audits: practical insights for algorithm auditing. Journal of information science, 50(2), 404-419. doi: https://doi.org/10.1177/01655515221093029
Makhortykh, M., Sydorova, M., Baghumyan, A., Vziatysheva, V. & Kuznetsova, E. (2024). Stochastic lies: How LLM-powered chatbots deal with prompts related to Russian disinformation about the war in Ukraine. Harvard Kennedy School Misinformation Review, 5(4), 1-21. https://doi.org/10.37016/mr-2020-154
Bareikytė, M. & Makhortykh, M. (2024). Digitally witnessable war from pereklychka to propaganda: Unfolding Telegram communication during Russia’s war in Ukraine. Media, War & Conflict (online first). https://doi.org/10.1177/17506352241255890
Kacperski, C., Bielig, M., Makhortykh, M., Sydorova, M., Ulloa, R. (2024). Examining bias perpetuation in academic search engines: An algorithm audit of Google and Semantic Scholar. First Monday, 29(11), 1-20. doi: https://doi.org/10.5210/fm.v29i11.13730
Makhortykh, M. (2024). Shall the robots remember? Conceptualising the role of non-human agents in digital memory communication. Memory, Mind & Media, 3(3), 1-17. doi: https://doi.org/10.1017/mem.2024.2
Makhortykh, M. (2024). Day shall come again: How digital maps are used for planning recovery for Ukrainian cities in war. TRIALOG, 148-149, 57-66.
Makhortykh, M. (2023). Unreliable narrators or untimely archivists? Challenges of using digital platforms for documenting and remembering Russia’s war in Ukraine. Georgetown Journal of International Affairs, 24 (2), 165-173. doi: https://doi.org/10.1353/gia.2023.a913642
Makhortykh, M. (2023). The user is dead, long live the platform? Problematising the user-centric focus of (digital) memory studies. Memory Studies, 16(6), 1500-1512. doi: https://doi.org/10.1177/17506980231202849
González-Aguilar, J., Segado-Boj, F., & Makhortykh, M. (2023). Populist Right Parties on TikTok: Spectacularization, Personalization and Hate Speech. Media and Communication, 11(2), 232–240. doi: https://doi.org/10.17645/mac.v11i2.6358
Gil-Lopez, T., Christner, C., de Leon, E., Makhortykh, M., Urman, A., Maier, M., & Adam, S. (2023). Do (not!) track me: Relationship between willingness to participate and sample composition in online information behavior tracking research. Social Science Computer Review. doi: https://doi.org/10.1177/0894439323115663
Kuznetsova, E. & Makhortykh, M. (2023). Blame it on the Algorithm? Russian Government-sponsored Media and Algorithmic Curation of Political Information on Facebook. International Journal of Communication, 17, 971–992.
Makhortykh, M., Zucker, E. M., Simon, D. J., Bultmann, D., & Ulloa, R. (2023). Shall androids dream of genocides? How generative AI can change the future of memorialization of mass atrocities. Discover Artificial Intelligence, 3(1), 1-17.
Urman, A. & Makhortykh, M. (2023). You are how (and where) you search? Comparative analysis of web search behaviour using web tracking data. Journal of Computational Social Science. doi: https://doi.org/10.1007/s42001-023-00208-9
Urman, A. & Makhortykh, M. (2023). How transparent are transparency reports? Comparative analysis of transparency reporting across online platforms. Telecommunications Policy. doi: https://doi.org/10.1016/j.telpol.2022.102477
Makhortykh, M., Urman, A., & Ulloa, R. (2022). Memory, counter-memory, and denialism: How search engines circulate information about Holodomor-related memory wars. Memory Studies, 15(6), 1330–1345. doi: https://doi.org/10.1177/17506980221133732
Adam, S., Urman, A., Aldt, D., Gil-Lopez, T., Makhortykh, M., & Maier, M. (2022). Media trust and the COVID-19 pandemic: An analysis of short-term trust changes, their populist underpinnings and their relation to usage patterns in Switzerland. Communication Research. doi: https://doi.org/10.1177/00936502221127484
Urman, A., Makhortykh, M., Ulloa, R., & Kulshrestha, J. (2022). Where the Earth is flat and 9/11 is an inside job: A comparative algorithm audit of conspiratorial information in web search results. Telematics and Informatics, 72, 1-15. doi: https://doi.org/10.1016/j.tele.2022.101860
González Aguilar, J. M. & Makhortykh, M. (2022). Laughing to forget or to remember? Anne Frank memes and mediatization of Holocaust memory. Media, Culture & Society (online first). doi: https://doi.org/10.1177/01634437221088951
Urman, A., Makhortykh, M., Ulloa, R. (2022). Auditing the representation of migrants in image web search results. Humanities and Social Sciences Communications, 130(9): 1-16. doi: https://doi.org/10.1057/s41599-022-01144-1
de León, E., Makhortykh, M., Urman, A., Gil Lopez, T. & Adam, S. (2022). News, threats, and trust: The role of threat perceptions in determining COVID-19 media effects on changing political trust. The Journal of Press/Politics (online first). https://doi.org/10.1177/19401612221087179
Wijermars, M. & Makhortykh, M. (2022). Sociotechnical imaginaries of algorithmic governance in EU policy on online disinformation and FinTech. New Media & Society, 24(4), 942-963. doi: https://doi.org/10.1177/14614448221079033
Makhortykh, M., Urman, A., Münch, F., Heldt, A., Dreyer, S., & Kettemann, M. (2022). Not all who are bots are evil: A cross-platform analysis of automated agent governance. New Media & Society, 24(4), 964-981. doi: https://doi.org/10.1177/14614448221079035
Makhortykh, M., Urman, A. & Wijermars, M. (2022). A story of (non)compliance, bias, and misinformation: How Google and Yandex represented Smart Voting during the 2021 parliamentary elections in Russia. HKS Misinformation Review, 3(2), 1-16. doi: https://doi.org/10.37016/mr-2020-94
Merten, L., Metoui, N., Makhortykh, M., Trilling, D., Möller, J. (2022). News won't find me? Exploring inequalities in social media news use with tracking data. International Journal of Communication, 16, 1127–1147.
Dovbysh, O., Wijermars, M. & Makhortykh, M. (2022). How to reach Nirvana: Yandex, news personalisation and the future of Russian journalistic media. Digital Journalism (online first). doi: https://doi.org/10.1080/21670811.2021.2024080
Makhortykh, M., Urman, A., Gil-Lopez, T., Ulloa, R. (2021). To track or not to track: Examining perceptions of online tracking for information behavior research. Internet Research (online first). doi: https://doi.org/10.1108/INTR-01-2021-0074
Makhortykh, M., Urman, A., & Ulloa, R. (2021). Hey, Google, is it what the Holocaust looked like? Auditing algorithmic curation of visual historical content on Web search engines. First Monday, 26(10). doi: https://doi.org/10.5210/fm.v26i10.11562
Makhortykh, M. (2021). Memoriae ex machina: How algorithms make us remember and forget. Georgetown Journal of International Affairs, 22(2), 180-185. doi: https://doi.org/10.1353/gia.2021.0027
Makhortykh, M. & Wijermars, M. (2021). Can filter bubbles protect information freedom? Discussions of algorithmic news recommenders in Eastern Europe. Digital Journalism (online first). doi: https://doi.org/10.1080/21670811.2021.1970601
Bastian, M., Helberger, N., & Makhortykh, M. (2021). Safeguarding the journalistic DNA: Attitudes towards the role of professional values in algorithmic news recommender designs. Digital Journalism, 9(6), 835-863. doi: https://doi.org/10.1080/21670811.2021.1912622
Makhortykh, M. (2021). #givemebackmy90s: Memories of the First Post-Soviet Decade in Russia on Instagram and TikTok. Cultures of History Forum. doi: https://doi.org/10.25626/0128
Urman, A., Makhortykh, M., & Ulloa, R. (2021). The matter of chance: Auditing web search results related to the 2020 US presidential primary elections across six search engines. Social Science Computer Review (online first). doi: https://doi.org/10.1177/08944393211006863
Urman, A. & Makhortykh, M. (2021). There can be only one truth: Ideological segregation and online news communities in Ukraine. Global Media & Communication, 17(2), 167-187. doi: https://doi.org/10.1177/17427665211009930
Zarouali, B., Makhortykh, M., Bastian, M., & Araujo, T. (2021). Overcoming polarization with chatbot news? Investigating the impact of news content containing opposing views on agreement and credibility. European Journal of Communication, 36(1), 53-68. doi: https://doi.org/10.1177/0267323120940908
Bastian, M., Makhortykh, M., Harambam, J. & van Drunen, M. (2020). Explanations of news personalisation across media types and systems. Internet Policy Review, 9(4), 1-34. doi: https://doi.org/10.14763/2020.4.1504
Makhortykh, M., de Vreese, C., Helberger, N., Harambam, J., & Bountouridis, D. (2020). We are what we click: Understanding time and content-based habits of online news readers. New Media & Society, 23 (9), 2773-2800. doi: https://doi.org/10.1177/1461444820933221
Makhortykh, M. (2020). Historical memory and securitisation of the Russian intervention in Syria. International Politics, 57, 1063-1081. doi: https://doi.org/10.1057/s41311-020-00232-w
Makhortykh, M., & González Aguilar, J. M. (2020). Memory, politics and emotions: internet memes and protests in Venezuela and Ukraine. Continuum, 34(3), 342-362. doi: https://doi.org/10.1080/10304312.2020.1764782
Makhortykh, M., & Bastian, M. (2020). Personalizing the war: Perspectives for the adoption of news recommendation algorithms in the media coverage of the conflict in Eastern Ukraine. Media, War & Conflict (online first). doi: https://doi.org/10.1177/1750635220906254
Makhortykh, M., Lyebyedyev, Y., & Kravtsov, D. (2020). Past Is Another Resource: Remembering the 70th Anniversary of the Victory Day on LiveJournal. Nationalities Papers, 49(2), 375-388. doi: https://doi.org/10.1017/nps.2019.64
Makhortykh, M. (2020). Remediating the past: YouTube and Second World War memory in Ukraine and Russia. Memory Studies, 13(2), 146-161. doi: https://doi.org/10.1177/1750698017730867
Helberger, N., Poort, J., & Makhortykh, M. (2020). Four tales of sci-fi and information law. Internet Policy Review, 9(1), 1-8. doi: http://dx.doi.org/10.14763/2020.1.1457
Makhortykh, M., Urman, A., & Ulloa, R. (2020). How search engines disseminate information about COVID-19 and why they should do better. HKS Misinformation Review, 1(1), 1-12. doi: https://doi.org/10.37016/mr-2020-017
Makhortykh, M. and Sydorova, M. (2019). Animating the subjugated past: Digital greeting cards as a form of counter-memory. Visual Communication, 21(1): 28-52. doi: https://doi.org/10.1177/1470357219890636
Bastian, M., Makhortykh, M. and Dobber, T. (2019). News personalization for peace: how algorithmic recommendations can impact conflict coverage. International Journal of Conflict Management, 30(3), 309-328. doi: https://doi.org/10.1108/IJCMA-02-2019-0032
Makhortykh, M. (2019). Nurturing the pain: Audiovisual tributes to the Holocaust on YouTube. Holocaust Studies, 25(4), 441-466. doi: https://doi.org/10.1080/17504902.2018.1468667
Menyhért, A. and Makhortykh, M. (2018). From individual trauma to frozen currents: Conceptualising digital trauma studies. Studies in Russian Eurasian, and Central European New Media, 18(18), 1-8.
Makhortykh, M. (2018). Framing the Holocaust online: Memory of the Babi Yar massacres on Wikipedia. Studies in Russian Eurasian, and Central European New Media, 18(18), 67-94.
Makhortykh, M. (2017). War memories and online encyclopedias: Framing 30 June 1941 on Wikipedia. Journal of Educational Media, Memory, and Society, 9(2), 40-68. doi: http://dx.doi.org/10.3167/jemms.2017.090203
Makhortykh, M. and Sydorova, M. (2017). Social media and visual framing of the conflict in Eastern Ukraine. Media, War and Conflict, 10(3), 359-381. doi: https://doi.org/10.1177/1750635217702539
Makhortykh, M. and Lyebyedyev, Y. (2015). #SaveDonbassPeople: Twitter, propaganda, and conflict in Eastern Ukraine. The Communication Review, 18(4), 239-270. doi: https://doi.org/10.1080/10714421.2015.1085776
Makhortykh, M. (2015). Everything for the lulz: Historical memes and World War II memory on Lurkomor’e. Studies in Russian Eurasian, and Central European New Media, 13(13), 63-90.
Fredheim, R., Howanitz, G. and Makhortykh, M. (2014). Scraping the monumental: Stepan Bandera through the lens of quantitative memory studies. Studies in Russian Eurasian, and Central European New Media, 12(12), 25–53.
Zucker, E., Makhortykh, M., Ulloa, R., Bultmann, D. & Simon, D. (2023). AI and archive: How technology can help preserve Holocaust heritage under the risk of disappearance? Journal of Eastern European Holocaust Studies, 1(2), 357–363. https://doi.org/10.1515/eehs-2023-0052
Makhortykh, M., Vziatysheva, V., Sydorova, M. (2023). Generative AI and contestation and instrumentalization of memory about the Holocaust in Ukraine. Journal of Eastern European Holocaust Studies, 1(2), 349–355. https://doi.org/10.1515/eehs-2023-0054
Urman, A., Makhortykh, M., Ulloa, R., Sydorova, M. & Kulshrestha, J. (2023). Constants and variables: How does the visual representation of the Holocaust by AI change over time. Journal of Eastern European Holocaust Studies, 1(2), 365–371. https://doi.org/10.1515/eehs-2023-0055
Makhortykh, M. (2023). Open Forum: Possibilities and Risks of Artificial Intelligence for Holocaust Memory. Journal of Eastern European Holocaust Studies, 1(2), 347–348. https://doi.org/10.1515/eehs-2023-0053
Cáceres-Zapatero, M. D., Makhortykh, M., & Segado-Boj, F. (2022). Discursos de odio en comunicación: Investigaciones y propuestas. Comunicar, 71, 1-3.
Makhortykh, M. (2018). Remediating violence: Second World War memory on Wikipedia. Remembrance and Solidarity Studies, 6, 123-145.
Makhortykh, M. (2014). Memorializatsiia pamiati pro zvilnennia Kyieva vid nimetskoi okupatsii za doby nezalezhnosti (1991-2013) [Memorialization of memory about the liberation of Kyiv from German occupation during the independence period (1991-2013)]. Hileia, 88, 65–68.
Makhortykh, M. (2014). Memorializatsiia pamiati pro zvilnennia Kyieva vid nimetskoi okupatsii za radianskoi doby (1943–1991) [Memorialization of memory about the liberation of Kyiv from German occupation during the Soviet period (1943–1991)]. Hileia, 87, 108–112.
Makhortykh, M. (2014). Kyivski toponimy yak element istorychnoi pamiati pro zvilnennia mista vid nimetskoi okupatsii za doby nezalezhnosti (1991-2013) [Kyiv toponyms as the element of historical memory about the liberation of Kyiv from German occupation during the independence period (1991–2013]). Hileia, 86, 82–87.
Makhortykh, M. (2014). Kyivski toponimy yak element istorychnoi pamiati pro zvilnennia mista vid nimetskoi okupatsii za radianskoi doby (1944–1991) [Kyiv toponyms as the element of historical memory about the liberation of Kyiv from German occupation during the Soviet period (1944–1991)]. Hileia, 84, 100–105.
Makhortykh, M. (2025). Holocaust memory on Instagram and TikTok. In M. Berg, A. Lorenz & K. Oswald (eds), History on Instagram and TikTok (pp. 273-288). De Gruyter. https://doi.org/10.1515/9783111360874-013
Makhortykh, M. & Bareikytė, M. (2025). AI visions: Representing Russia's War Against Ukraine for Humans and Machines. In N. Zasanska & N. Ivanenko (Eds.) Digital Warfare: Media and Technologies in the Russo-Ukrainian War(pp. 107-123). Transcript.
Makhortykh, M., Baghumyan, A., Vziatysheva, V., Sydorova, M. & Kuznetsova, E. (2025). LLMs as Information Warriors? Auditing how LLM-Powered Chatbots Tackle Disinformation about Russia’s War in Ukraine. In N. Zasanska & N. Ivanenko (Eds.) Digital Warfare: Media and Technologies in the Russo-Ukrainian War (pp. 123-151). Transcript.
Makhortykh, M., Urman, A., Ulloa, R., Sydorova, M., & Kulshrestha, J. (2024). Does it get better with time? Web search consistency and relevance in the visual representation of the Holocaust. In In E. Pfanzelter, D. Rupnow, É. Kovács & M. Windsperger (Eds), #Connected Histories. Memories and Narratives of the Holocaust in Digital Space (pp. 13-33). De Gruyter.
Makhortykh, M. (2023). No AI after Auschwitz? Bridging AI and memory ethics in the context of information retrieval of genocide-related information. In A. Chakraborty, S. Kumar, A. Mukherjee, and J. Kulshrestha (Eds.), Ethics in artificial intelligence: Bias, fairness and beyond (pp. 71-85). Springer. DOI: https://doi.org/10.1007/978-981-99-7184-8_4
Walden, V. & Makhortykh, M. (2023). #Hashtag Commemoration: Public Engagement with Commemoration Events during Covid-19 Lockdowns. In S. Gensburger & O. Friedman (Eds.), The COVID-19 Pandemic and Memory: Remembrance, commemoration, and archiving in crisis (pp. 245-266). Springer.
Makhortykh, M. & Menyhért, A. (2023). Keeping the past from freezing: Augmented reality and memories in the public space. In S. Gensburger & J. Wüstenberg (Eds.), De-Commemoration: Removing statues and renaming places (pp. 355-367). Berghahn Books. https://doi.org/10.1515/9781805391081-039
Makhortykh, M. (2023). We were hungry, but we were also free: Narratives of Russia's first post-Soviet decade on Instagram. In K. Robbe (Ed.), Remembering Transitions: Local Revisions and Global Crossings in Culture and Media (pp. 205-232). De Gruyter.
Makhortykh, M. & Menyhért, A. (2023). Empêcher le passé de se figer: réalité augmentée et memories dans l’espace public. In S. Gensburger & J. Wüstenberg (Eds.), Dé-commémoration : quand le monde déboulonne des statues et renomme des rues (pp. 408-417). Fayard.
Makhortykh, M. & González-Aguilar, J. (2023). Is it fine? Internet memes and hate speech on Telegram in relation to Russia’s war in Ukraine. In B. Di Fátima (Ed.), Hate Speech in Social Media: A Global Approach (pp. 75-95). LabCom.
Makhortykh, M., Urman, A., Ulloa, R., Kulshrestha, J. (2023). Can an algorithm remember the Holocaust? Comparative algorithmic audit of Holocaust-related information on search engines. In I. Groschek & H. Knoch (Eds.), Digital Memory: Neue Perspektiven für die Erinnerungsarbeit (pp. 79-93). Wallstein Verlag. https://doi.org/10.5771/9783835384477-79
Makhortykh, M., Urman, A. & Ulloa, R. (2023). This is what pandemic looks like: Visual framing of COVID-19 on search engines. In D. Vakoch & J. Pollock (Eds.), COVID Communication: Exploring Pandemic Discourse (pp 113-123). Springer.
Makhortykh, M. (2022). Historical memory and securitisation of the Russian intervention in Syria. In L. Klymenko and M. Siddi (Eds.), Historical Memory and Foreign Policy (pp. 123-140). Palgrave Macmillan.
Makhortykh, M. (2020). Geospatial data in Russia’s geoweb. In D. Gritsenko, M. Wijermars and M. Kopelev (Eds.), The Palgrave Handbook of Digital Russia Studies (pp. 585-604). Palgrave Macmillan.
Kaprans, M. and Makhortykh, M. (2018). Discussing wartime collaboration in a transnational digital space: The framing of the UPA and the Latvian Legion in Wikipedia. In E. Narvselius and G. Grinchenko (Eds.) Formulas of betrayal: Traitors, collaborators and deserters in contemporary European politics of memory (pp. 169-197). Palgrave Macmillan.
Makhortykh, M. (2018). #NoKievNazi: Social media, historical memory and securitization in the Ukraine crisis. In V. Strukov and V. Apryshchenko (Eds.), Memory and securitization in contemporary Europe (pp. 219-249). Palgrave Macmillan.
Makhortykh, M. (2015). Identity, memory and new media: Inventing the history of Ukraine in Wikipedia. In R. van der Laarse, M. Cherenkov, V. Proshak, and T. Mykhalchuk (Eds.) Religion, state, society, and identity in transition Ukraine (pp. 241-261). WLP.
Urman, A., Makhortykh, M., & Hannak, A. (2025). WEIRD Audits? Research Trends, Linguistic and Geographical Disparities in the Algorithm Audits of Online Platforms-A Systematic Literature Review. In Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency (pp. 375-390).
Vziatysheva, V. & Makhortykh, M. (2024). Take (No) Chances: How Prompt Formulation and Stochasticity Affect the Accuracy of LLMs for Fact-Checking. EKAW 2024: EKAW 2024 Workshops, Tutorials, Posters and Demos, 24th International Conference on Knowledge Engineering and Knowledge Management (pp. 1-12). CEUR-WS.
Makhortykh, M., Urman, A., & Ulloa, R. (2021). Detecting race and gender bias in visual representation of AI on web search engines. In Second International Workshop on Algorithmic Bias in Search Recommendation (Bias 2021) (pp. 36-50). Springer. doi: https://doi.org/10.1007/978-3-030-78818-6_5
Urman, A., Makhortykh, M., and Ulloa, R. (2021). Auditing source diversity bias in video search results using virtual agents. In Companion Proceedings of the Web Conference 2021 (WWW '21) (pp. 232–236). ACM Press. doi: https://doi.org/10.1145/3442442.3452306
Makhortykh, M., Urman, A. & Ulloa, R. (2020). The more knowledge, the more grief: Auditing how search engine algorithms structure memories about mass atrocities. In Proceedings of DHBenelux 2020, 1-3. Zenodo. doi: https://doi.org/10.5281/zenodo.3871925
Harambam, J., Bountouridis, D., Makhortykh, M. and van Hoboken, J. (2019). Designing for the better by taking users into account: a qualitative evaluation of user control mechanisms in (news) recommender systems. In Proceedings of the RecSys 2019, 69-77. ACM Press. doi: https://doi.org/10.1145/3298689.3347014
Bountouridis, D., Makhortykh, M., Sullivan, E., Harambam, J., Tintarev, N. and Hauff, C. (2019). Annotating credibility: Identifying and mitigating bias in credibility datasets. In Proceedings of the SIGIR Workshop on Reducing Online Misinformation Exposure (pp. 1-10). ACM Press
Sullivan, E., Bountouridis, D., Harambam, J., Najafian, S., Loecherbach, F., Makhortykh, M., Kelen, D., Wilkinson, D., Graus, D., Tintarev, N. (2019). Reading news with a purpose: Explaining user profiles for self-actualization. In Proceedings of the UMAP International Workshop on Transparent Personalization Methods based on Heterogeneous Personal Data (pp. 241-245). ACM Press. doi: https://doi.org/10.1145/3314183.3323456
Soldner, F., Ho, J.C., Makhortykh, M., van der Vegt, I., Mozes, M. and Kleinberg, B. (2019). Uphill from here: Sentiment patterns in videos from left- and right-wing YouTube news channels. In Proceedings of the Third Workshop on Natural Language Processing and Computational Social Science (pp. 84-93). ACM Press. doi: https://doi.org/10.18653/v1/W19-2110
Bountouridis, D., Harambam, J., Makhortykh, M., Marrero, M., Tintarev, N., Hauff, C. (2019). SIREN: A simulation framework for understanding the effects of recommender systems in online news environments. In Proceedings of the ACM FAT* Conference on Fairness, Accountability, and Transparency (pp. 150-159). ACM Press. doi: https://doi.org/10.1145/3287560.3287583
Lyebyedyev, E., & Makhortykh, M. (2018). #Euromaidan: Quantitative analysis of multilingual framing 2013–2014 Ukrainian protests on Twitter. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining and Processing (pp. 276-280). IEEE. doi: https://doi.org/10.1109/DSMP.2018.8478462
Makhortykh, M. (2017). Tsifrovye praktiki pominoveniia v Knige pogibshikh za Ukrainu [Digital сommemoration practices in the Book of Deceased for Ukraine]. Proceedings of the International conference “Anthropology of the victim: From archaic roots to contemporary contexts” (pp. 58-72). Samara Academy of Humanities.
Makhortykh, M. (2015). The geopolitics of cyberspace: Cyberwars and the Ukrainian crisis. Proceedings of the International conference “Ukraine in the system of changing paradigms of the world order XX - XXI centuries” (pp. 155-159). Kyiv Borys Grinchenko University Publishing House.
Makhortykh, M. (2012). Transnatsionalna pam’yat yak ob’ekt istorychnogo doslidzhennya [Transnational memory as a subject of historical research]. Proceedings of the International conference “Innovative approaches to science in XXI century” (pp. 54–62). Research Center of Innovative Technologies.
Makhortykh, M. (2012). Istorychna pam'yat pro zvilnennya Kyiva vid nimetskoi okupatsiy y globalnomy prostori pam'yati [Historical memory about liberation of Kyiv from the German occupation in a structure of global memory space]. Proceedings of All-Ukrainian conference “Kyiv and its people in socio-cultural space of XIX-XXI centuries: National and European context” (pp. 154–161). Kyiv Borys Grinchenko University Publishing House.
Makhortykh, M. (2011). Kulturna pam'yat ta istorychna pam'yat yak zasoby mizhdystsyplinarnogo doslidzhennya [Cultural memory and historical memory as tools of interdisciplinary research]. Proceedings of the 3rd International conference of young scientists. Humanities and social sciences (pp. 60–62). Lviv Polytechnics Publishing House.
Makhortykh, M. (2011). Common European heritage: challenges of memory. Proceedings of the International conference “Science. Development. Progress” (pp. 16–18). Nairi.
Makhortykh, M. (2010). Perspektyvy ta vyklyky kylturnoi pam’yati na Ukraini [Perspectives and challenges of cultural memory in Ukraine]. Proceedings of the 2nd International conference of young scientists. Humanities and social sciences (pp. 36-38). Lviv Polytechnics Publishing House.
Makhortykh, M., Urman, A., & Sydorova, M. (2023, June 21). Quis custodiet ipsos custodes: Why we need to monitor AI-driven information inequalities in Switzerland in the context of popular votes. Reatch. https://reatch.ch/publikationen/quis-custodiet-ipsos-custodes-why-we-need-to-monitor-ai-driven-information-inequalities-in-switzerland-in-the-context-of-popular-votes
Makhortykh, M. & de Leon, E. (2023, March 30). Wie Algorithmen unseren Nachrichtenkonsum beeinflussen. European Journalism Observatory. https://de.ejo-online.eu/qualitaet-ethik/wie-algorithmen-unseren-nachrichtenkonsum-beeinflussen
González Aguilar, J. M. & Makhortykh, M. (2021, October 8). Why (not) so serious? Anne Frank memes and digital Holocaust memory. Digital Holocaust Memory. https://reframe.sussex.ac.uk/digitalholocaustmemory/2021/10/08/why-not-so-serious-anne-frank-memes-and-digital-holocaust-memory/
Makhortykh, M. (2021, February 4). Algorithmic auditing, the Holocaust, and search engine bias. Digital Holocaust Memory. https://reframe.sussex.ac.uk/digitalholocaustmemory/2021/02/04/algorithmic-auditing-the-holocaust-and-search-engine-bias/
Makhortykh, M. and Heather, M. (2024). AI and the Holocaust: rewriting history? The impact of artificial intelligence on understanding the Holocaust. UNESCO. https://doi.org/10.54675/ZHJC6844
Walden, V., Marrison, K., Verschure, P., Lammers, A., Makhortykh, M., Champion, E., Fernandez-Duque, S., Gröppel-Wegener, A., Groschek, I., Hadjiathanasiou, M., Kazlauskaitė, R., Carral, H., Phipps, K., Pitcairn, S., Sitka, R., Szász, B., Treiber, D., de Jong, S., Arnold-de Simine, S. & Popescu, D. (2024). Recommendations for Virtualising Holocaust Memoryscapes. REFRAME. doi: 10.20919/CSWV6705.
Walden, V., Marrison, K., Donald, I., Wright, E., Webber, N., Lammers, A., Makhortykh, M., Crawford, G., Tarvet, A., Grünkorn, M., Walton, J., McCartan, G., DeLappe, J., Bernard, L., Zimmermann, F., Farrell, D., Harell, Y., Finnegan, D., Nelson, S., Pater, P., Shapiro, A., Rhotert, S., Beresniova, C., Lawlor, L., Hulse, R. & Ladkin, S. (2024). Recommendations for Gaming and Play in Holocaust Memory and Education. REFRAME. doi: 10.20919/SWJI4234.
Zucker, E., Ulloa, R., Simon, D., Makhortykh, M. & Bultmann, D. (2024). Archiving Holocaust Digital Memorialization: The Lublin District Camps. A Digital Archive of Memorialization of Mass Atrocities (DAMMA) Workshop Whitepaper. MacMillan Center for International and Area Studies at Yale. https://macmillan.yale.edu/sites/default/files/made_working_paper_6_3-24.pdf
Makhortykh, M., Sydorova, M., Urman, A., Schoch, H. (2023). Popular Votes and Algorithms in Switzerland: Intransparent Priorisation of Political Information. Reatch. https://reatch.ch/files/publications/Whitepaper/Reatch_Whitepaper_Popular-Votes-and-Algorithms.pdf
Walden, V., Marrison, K., Makhortykh, M., Arnold-de Simine, S., Balis, A., Clavert, F., Cole, T., Culp, L., Grau, R., Groschek, I., Perak, B., Pucciarelli, A., Sagie, T., Szonyi, A., Torrance, A., Verschure, P., & Wierenga, S. (2023). Recommendations for using Artificial Intelligence and Machine Learning for Holocaust Memory and Education. REFRAME. DOI: 10.20919/ELVH8804
Walden, V., Marrison, K., Jolly, M., Makhortykh, M., Bailey-Tomecek, C., Brivati, B., Fernandez-Duque, S., Hogervorst, S., Hoyer, K., Jensen, M., Jones, S., Karathanasopoulou, E., Keydar, R., Kleeman, S., Lewkowicz, B., Nägel, V.L., Peleg, A., Pinchevski, A., Pucciarelli, A., Sobers, S., Stegmaier, S., Umbach, M., Ushakova, S., & White, M. (2023). Recommendations for Digitally Recording, Recirculating and Remixing Holocaust Testimony. Sussex: REFRAME. DOI: 10.20919/SKUL2830
Walden, V., Marrison, K., Lammers, A., Makhortykh, M., Axelsson, B., Bittner, C., Bolesta, M., Borck, L., Caine, M., Carr, G., de Jong, S., Hirsch, A., Ioannides, M., Jaeger, S., Kefalea, R., Maws, A., Miron, M.-I., Morrow, P., Pistol, R., Popescu, C., Sidebotham, L., Tureby, M.T., van Dijk, A., & Zabierowski, M. (2023). Recommendations for Digitising Material Evidence of the Holocaust. Sussex: REFRAME. DOI: 10.20919/FIOV3702
Walden, V., Marrison, K., Ebbrecht-Hartmann, T., Henig, L., Divon, T., Makhortykh, M., Adams, T., Alon, N., Berg, M., Century, R., Dalziel, I., Ellinghaus, M., Feldman, J., Forman, D., Gray, J., Groschek, I., Kansteiner, W., Lorenz, A., Łysak, T., Manca, S., Mann, H., Maws, A., Musih, N., Neiger, M., Phipps, K., Smith, C., Spiegel, J., & Wöckinger, M. (2023). Recommendations for using Social Media for Holocaust Memory and Education. Sussex: REFRAME. DOI: 10.20919/HVMK3781
Bultmann, D., Makhortykh, M., Simon, D., Ulloa, R., & Zucker, E. (2022). Digital Archive of Memorialization of Mass Atrocities (DAMMA) Workshop Whitepaper. Yale University Genocide Studies Program: Mass Atrocities in the Digital Era Working Paper #3.
Makhortykh, M., Rohrbach, T., Sydorova, M. & Baghumyan, A. (2024). Elections through the lens of Google? Auditing web search results in the context of the 2023 elections in Switzerland (accepted for release).
Rohrbach, T. & Makhortykh, M. (2024). Corporate Newsrooms 4.0 in der Schweiz: Eine explorative Studie zur Newsroom-basierten Unternehmenskommunikation im Zeitalter künstlicher Intelligenz. University of Bern. https://newsroom.co/wp-content/uploads/2024/06/CorporateNewsroom_Studie_2024_unibe.pdf
Makhortykh, M., Sydorova, M., Urman, A., Keller, F. & Adam, S. (2023). Algorithmic content selection in Switzerland – a study of Google and YouTube. BAKOM report (accepted for release).
Makhortykh, M., Kulichkina, A., & Maikovska, K. (2025). Evolution of wartime discourse on Telegram: A comparative study of Ukrainian and Russian policymakers’ communication before and after Russia’s full-scale invasion of Ukraine. arXiv. https://doi.org/10.48550/arXiv.2510.11746
Makhortykh, M. (2025). On mammoths and automatons: Representations of nostalgia and trauma in Syberia. SSRN. https://dx.doi.org/10.2139/ssrn.5598750
de León, E., Kristensen, J.B., Makhortykh, M., Mayerhöffer, E. & Adam, S. (2025). The Political Weaponization of Online Content: From Direct to Networked Exposure. OSF. https://doi.org/10.31235/osf.io/grne7_v1
Rohrbach, T., Makhortykh, M., & Sydorova, M. (2025). Campaigning through the lens of Google: A large-scale algorithm audit of Google searches in the run-up to the Swiss Federal Elections 2023. arXiv. https://doi.org/10.48550/arXiv.2507.06018
Ulloa, R., Zucker, E. M., Bultmann, D., Simon, D. J., & Makhortykh, M. (2025). From prosthetic memory to prosthetic denial: Auditing whether large language models are prone to mass atrocity denialism. arXiv. https://doi.org/10.48550/arXiv.2505.21753
Kozlovski, A., & Makhortykh, M. (2025). Digital dybbuks and virtual golems: AI, memory, and the ethics of Holocaust testimony. arXiv. https://doi.org/10.48550/arXiv.2503.01369
Makhortykh, M., Rorhbach, T., Sydorova, M., & Kuznetsova, E. (2025). Search engines in polarized media environment: Auditing political information curation on Google and Bing prior to 2024 US elections. arXiv. doi: https://doi.org/10.48550/arXiv.2501.04763
Kuznetsova, E., Vitulano, I., Makhortykh, M., Stolze, M., Nagy, T., & Vziatysheva, V. (2025). Fact-checking with Generative AI: A Systematic Cross-Topic Examination of LLMs Capacity to Detect Veracity of Political Information. arXiv. https://doi.org/10.48550/arXiv.2503.08404
Vziatysheva, V., Makhortykh, M., Sydorova, M., & Jumle, V. (2024). Google, how should I vote? How users formulate search queries to find political information on search engines. arXiv. doi: https://doi.org/10.48550/arXiv.2410.00778
Makhortykh, M., Baghumyan, A., Vziatysheva, V., Sydorova, M., & Kuznetsova, E. (2024). LLMs as information warriors? Auditing how LLM-powered chatbots tackle disinformation about Russia's war in Ukraine. arXiv. https://doi.org/10.48550/arXiv.2409.10697
de León, E., Makhortykh, M., Urman, A., & Ulloa, R. (2024). Googling the Big Lie: Search Engines, News Media, and the US 2020 Election Conspiracy. arXiv. https://doi.org/10.48550/arXiv.2409.10531
Rohrbach, T., & Makhortykh, M. (2024). A Matter of Mindset? Features and Processes of Newsroom-based Corporate Communication in Times of Artificial Intelligence. arXiv. https://doi.org/10.48550/arXiv.2407.06604
Jumle, V., Makhortykh, M., Sydorova, M., & Vziatysheva, V. (2024). Finding frames with BERT: A transformer-based approach to generic news frame detection. arXiv. https://doi.org/10.48550/arXiv.2409.00272
Rohrbach, T., Makhortykh, M., & Sydorova, M. (2024). Finding the white male: The prevalence and consequences of algorithmic gender and race bias in political Google searches. arXiv. https://doi.org/10.48550/arXiv.2405.00335
Adam, S., Makhortykh, M., Maier, M., Aigenseer, V., Urman, A., Gil-Lopez, T, Christner, C., de Leon, E., & Ulloa, R. (2024). Improving the quality of individual-level online information tracking: Challenges of existing approaches and introduction of a new content-and long-tail sensitive academic solution. arXiv. https://doi.org/10.48550/arXiv.2403.02931
Kuznetsova, E., Makhortykh, M., Sydorova, M., Urman, A., Vitulano, I., Stolze, M. (2024). Algorithmically Curated Lies: How Search Engines Handle Misinformation about US Biolabs in Ukraine. arXiv. https://doi.org/10.48550/arXiv.2401.13832
Urman, A., Makhortykh, M. & Hannak, A. (2024). Mapping the Field of Algorithm Auditing: A Systematic Literature Review Identifying Research Trends, Linguistic and Geographical Disparities. arXiv. https://doi.org/10.48550/arXiv.2401.11194
Makhortykh, M. (2024). No AI After Auschwitz? Bridging AI and Memory Ethics in the Context of Information Retrieval of Genocide-Related Information. arXiv. https://doi.org/10.48550/arXiv.2401.13079
Valli, C., de Leon, E. & Makhortykh, M. (2024). Personality and Political News Consumption: A Re-Evaluation of the Evidence Using Webtracking Data. SSRN. https://dx.doi.org/10.2139/ssrn.4702926
Kacperski, C., Bielig, M., Makhortykh, M., Sydorova, M., Ulloa, R. (2023). Examining bias perpetuation in academic search engines: an algorithm audit of Google and Semantic Scholar. arXiv. https://doi.org/10.48550/arXiv.2311.09969
Kuznetsova, E., Makhortykh, M., Vziatysheva, V., Stolze, M., Baghumyan, A. & Urman, A. (2023). In Generative AI we Trust: Can Chatbots Effectively Verify Political Information? arXiv. https://doi.org/10.48550/arXiv.2312.13096
Makhortykh, M., Zucker, E. M., Simon, D. J., Bultmann, D., & Ulloa, R. (2023). Shall androids dream of genocides? How generative AI can change the future of memorialization of mass atrocities. arXiv. https://doi.org/10.48550/arXiv.2305.14358
Urman, A., & Makhortykh, M. (2023). The Silence of the LLMs: Cross-Lingual Analysis of Political Bias and False Information Prevalence in ChatGPT, Google Bard, and Bing Chat. OSF. https://doi.org/10.31219/osf.io/q9v8f
Urman, A., Hannak, A. & Makhortykh, M. (2023). User Attitudes to Content Moderation in Web Search. arXiv. https://doi.org/10.48550/arXiv.2310.03458
Makhortykh, M., Urman, A., & Ulloa, R. (2022). This is what a pandemic looks like: Visual framing of COVID-19 on search engines. arXiv. https://doi.org/10.48550/arXiv.2209.11120
Ulloa, R., Makhortykh, M., Urman, A., & Kulshrestha, J. (2022). Novelty in news search: a longitudinal study of the 2020 US elections. arXiv. https://doi.org/10.48550/arXiv.2211.04746
Urman, A., & Makhortykh, M. (2022). My war is your special operation: Engagement with pro-and anti-regime framing of the war in Ukraine on Russian social media. OSF. https://doi.org/10.31219/osf.io/67snk
Makhortykh, M., de León, E., Urman, A., Christner, C., Sydorova, M., Adam, S., Maier, M. & Gil-Lopez, T. (2022). Panning for gold: Lessons learned from the platform-agnostic automated detection of political content in textual data. ArXiv. https://doi.org/10.48550/arXiv.2207.00489
Kuznetsova, E. & Makhortykh, M. (2021). Blame it on the Algorithm? Russian Government-sponsored Media and Algorithmic Curation of Political Information on Facebook. ResearchGate.https://www.researchgate.net/publication/355165305_Blame_it_on_the_Algorithm_Russian_Government-sponsored_Media_and_Algorithmic_Curation_of_Political_Information_on_Facebook
Makhortykh, M., Urman, A., & Ulloa, R. (2021). Detecting race and gender bias in visual representation of AI on web search engines. ArXiV. https://doi.org/10.48550/arXiv.2106.14072
Ulloa, R., Makhortykh, M. & Urman, A. (2021). Scaling up Search Engine Audits: Practical Insights for Algorithm Auditing. ArXiv. https://doi.org/10.48550/arXiv.2106.05831
Urman, A. & Makhortykh, M. (2021). You are how (and where) you search? Comparative analysis of web search behaviour using web tracking data. ArXiv. https://doi.org/10.48550/arXiv.2105.04961
Urman, A., Makhortykh, M., and Ulloa, R. (2021). Auditing source diversity bias in video search results using virtual agents. ArXiV. https://doi.org/10.48550/arXiv.2106.02715
Urman, A., Makhortykh, M., & Ulloa, R. (2021). The Matter of Chance: Auditing Web Search Results Related to the 2020 US Presidential Primary Elections Across Six Search Engines. ArXiV. https://doi.org/10.48550/arXiv.2105.00756
Urman, A., Makhortykh, M., Ulloa, R., & Kulshrestha, J. (2021). Where the Earth is flat and 9/11 is an inside job: A comparative algorithm audit of conspiratorial information in web search results. ArXiv. https://doi.org/10.48550/arXiv.2112.01278